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ABSTRACT: This work describes a method to determine mechanical properties (tensile strength at break and tensile modulus) of

poly(ethylene terephthalate) using median infrared spectroscopy and multivariate calibration. Infrared spectroscopy is very promising

for polymer process control and final product analysis because it is rapid and nondestructive. The spectra of the films were obtained

using two techniques: attenuated total reflection and direct transmission. The spectra were subjected to various preprocessing proce-

dures, such as smoothing and derivative using the algorithm Savitzy-Golay, standard normal variate, multiplicative scatter correction

and, as well, combinations of some of these preprocessing techniques. The predictive ability of the regression models were evaluated

using an external validation set. The regression techniques used, partial least square and multiple linear regression, showed,

in general, comparable results with root mean square error of prediction similar to the repeatability of the conventional method

used to determine these mechanical properties (1.3 kgf/mm2 for tensile strength at break and 29.6 kgf/mm2 for tensile modulus).
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INTRODUCTION

Poly(ethylene terephthalate) (PET) is a well-known engineering

plastic that offers excellent performance in a variety of applica-

tions such as in the film, fiber, and packaging industries.1–3 Its

use in these different industries is mainly due to its properties

such as its gas barrier, excellent chemical resistance, mechanical

and thermal properties, good optics, and relatively low cost of

its raw material.4,5

The growth of the world production of PET4 has increased the

need to develop methodologies for rapid and effective quality

control of the polymer. Among the quality parameters of poly-

mers, the mechanical property is the most important and

arouses the most technological interest. Tensile strength at

break, tensile modulus, and percentage elongation properties are

mechanisms that serve as comparison parameters to measure

the mechanical performance of the different polymers.6 The

determination of the mechanical properties of these polymers is

important to ensure the quality and specifications required for

the numerous applications. Currently, these properties are deter-

mined by mechanical tests using a universal testing machine.

Although mechanical testing is effective, it is not efficient in

that it is destructive and time-consuming. Therefore, simple,

fast, effective, relative low cost, and nondestructive methods,

which can be used with the same effectiveness as the reference

method, have become very attractive. In this context, infrared

spectroscopy combined with multivariate calibration is a

technique that has been successfully applied to various areas

such as agriculture,7–9 food,10–12 pharmaceutical,13–15 fuel,16–18

and paper.19,20

Given the diversity of applications, near and median infrared

spectrometric (NIR and MIR) techniques are very promising

means of determining polymer properties. Infrared spectros-

copy, when used as an analytical quantitative tool, might be

called a secondary technique; that is, it is necessary to build a

multivariate model to correlate the infrared spectra (matrix X)

with the corresponding values of the property of interest

(vector y), previously determined by a reference method. After

validation of the method, the properties can be monitored and

evaluated using infrared spectra. The main advantage of these

techniques is to decrease the time and cost of the analysis con-

ducted in the laboratory, because speed combined with
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efficiency in the determination of quality parameters of the ma-

terial is essential for the control of industrial processes. In addi-

tion, samples are not destroyed during the analysis, which pro-

vides quality control for the whole batch instead of only for a

few samples.

Works have been reported using NIR and MIR spectroscopy

combined with chemometric techniques to evaluate properties

of polymers. Zhu and Hieftje21 determined the intrinsic viscos-

ity and concentration of poly(butylene terephthalate)-PBT

blends of polycarbonate using NIR spectroscopy and multiple

linear regression (MLR). The correlation coefficients of the pre-

dicted (using NIR/MLR) versus reference values were 0.979 (for

intrinsic viscosity) and 0.955 (for concentration), respectively.

Shimoyama et al.22 determined the density of linear low density

polyethylene pellets using NIR spectroscopy and partial least

squares regression (PLS). The PLS model showed satisfactory

results with a correlation coefficient of 0.970. Ozzetti et al.23

determined the tacticity of blends of polypropylene with MIR

spectroscopy using PLS and principal component regression.

The errors incurred for both models were up to five times lower

than the errors found using the reference method (13C-NMR).

Camacho et al.24 determined the moisture content of recycled

nylon using NIR spectroscopy and PLS models. This method

was efficient, with a RMSEP (root mean square error of predic-

tion) of 0.05% (w/w). Spinac�e et al.25 determined the intrinsic

viscosity of PET using MIR spectroscopy and PLS models. The

results showed a high correlation (0.9580, 0.9592, and 0.9674)

for values ranging from 0.346 to 0.780 dL g�1. Blanco et al.26

determined the acid value and hydroxyl value in samples taken

during the manufacture of polyester resins, using NIR spectros-

copy and PLS models. The models showed satisfactory predic-

tive capability for the three properties. Patel et al.27 determined

polyvinyl alcohol percentage (PVOH) in vinyl acetate-alcohol

resins (VAAR) using NIR spectroscopy and PLS models. An

excellent correlation coefficient (0.9997) was obtained in

determining this property, showing that the technique can be

applied successfully and precisely to determine the percentage of

PVOH in VAAR samples in a methyl acetate: methanol solution

with the following compositions (in volume): 80 : 20; 78 : 22,

and 82 : 18.

In this work, methods were developed based on MIR and che-

mometrics to determine the mechanical properties of PET.

Models were built using spectra data obtained by direct trans-

mission and using the attenuated total reflection (ATR) tech-

nique. The results obtained with two multivariate calibration

methods (partial least squares—PLS and multiple linear regres-

sion—MLR), using different preprocessing techniques, were

evaluated and compared.

EXPERIMENTAL

Samples

Ninety-five samples of PET films, 12 lm thick, were collected

from different batches obtained from an industry located in

Pernambuco State, Brazil (Pernambuco).

Exposition to Gamma Radiation

To increase the range of the mechanical property variations of

the industrial samples, without losing the main polymer fea-

tures, 48 films were exposed to gamma radiation, using radia-

tion from a cobalt-60 (60Co) source with different doses

(25, 60, 120, 240, and 500 kGy), using Gammacell, model GC

220 equipment.

Record of the MIR Spectra

The spectra of all samples of PET films were obtained both

by direct transmission and ATR using a spectrophotometer

ABB-Bomem, model FTLH 2000-154. The spectra were recorded

at room temperature 23�C 6 1�C in the spectral range from

600 to 4000 cm�1, with resolution 4 cm�1 and eight scans. The

median time to record the spectrum of each polymer sample

was � 23 s.

Reference Method

The reference method used was mechanical tests in a universal

testing machine (Instron 4301, model 2365). The mechanical

tests were performed according to ASTM D 882 (Method for

Tensile Properties of Thin Plastic Sheeting). The tests were

carried out using films with the dimensions of (200.0 � 15.2)

6 1.0 mm2 and the distance between the grips was 100.0 mm

at room temperature. The mechanical properties studied in this

work were the tensile strength at break and tensile modulus.

Calibration Models

Multivariate models were developed using PLS and MLR. Several

preprocessing were evaluated such as: smoothing and first deriv-

ative using the Savitzky-Golay algorithm, with windows of 5, 7,

9, 11, 13, 15, and 17 points and second-order polynomial; stand-

ard normal variate (SNV) and multiplicative signal correction

(MSC), as well as combinations of these. The anomalous samples

were detected and excluded from the calibration sets after evalu-

ating their leverage, spectral (X) residue, and the property of in-

terest (y) residue. The selection of samples for calibration (62)

and prediction (30) sets were made using the SPXY (Sample set

partitioning based on joint x-y distances) algorithm.28 All mod-

els were obtained using full cross-validation to determine the

number of factors (PLS) or number of variables (MLR). PLS

models were built using only the variables which corresponded

to the significant regression coefficients chosen by using the

Jack-Knife.29 Variables selection for MLR models was carried out

by using the successive projection algorithm (SPA). The essence

of SPA consists of projection operations carried out on a calibra-

tion matrix. The SPA builds an ordered chain of variables where

each element is selected to present the lowest colinearity (highest

ortogonality) with respect to the previous ones. The best per-

forming chain is selected to contain the most valuable variables

to be included in a MLR model.30

The predictive ability of MLR and PLS models was evaluated

based on an external validation set. The data treatment was per-

formed using UnscramblerX
VR

and Matlab R2010a
VR

software.

RESULTS AND DISCUSSION

MIR Spectra

The spectral region selected to build the calibration models was

from 650 to 1800 cm�1, given the presence of informative PET
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bands and satisfactory signal/noise ratio. The MIR spectra of

the polymeric samples were obtained using direct transmittance

and ATR, as shown in the Figure 1(a) and (b), respectively. The

main characteristic absorption bands of PET films can be

observed in its IR spectrum (Figure 1), such as: OCO ester

vibrations (1720, 1264, 1245, 1098, and 1016 cm�1), CH aro-

matic vibrations (1016 and 724 cm�1), and vibrations of the

C¼¼C aromatic bonds (1471, 1507, and 1580 cm�1). As can be

seen in Figure 1(a), the spectra obtained by direct transmission

show regions with saturated bands (hatched areas). Thus before

building the models, these regions, had been excluded from the

data set. The regions removed are the vibrations associated to

the OCO ester group.

Mechanical Tests

The mechanical tests were performed with films collected from

different batches. The range of variation for each property is

presented in the first column on Table I. As the production pro-

cess was under control, the range of variation of the properties

of the polymers produced was not wide enough to build reliable

models. As recommended in ASTM 1655-05, the range for the

property should be at least five times the standard deviation of

the reproducibility for the reference analysis. To solve this prob-

lem, 48 industrial samples were exposed to gamma radiation

(25, 60, 120, 240, and 500 kGy), to extend the range of

Figure 1. MIR spectrum obtained by (a) direct transmission and (b) ATR

mode.

Table I. Initial (Industrial Range), Extended Parameter Range, and

Repeatability of the Mechanical Properties of PET Films

Property

Industrial
range
(kgf/mm2)

Extended
parameter range
(kgf/mm2)

Repeatability
(kgf/mm2)

Tensile strength
at break

17.9–24.0 9.0–24.0 1.3

Tensile modulus 434.0–505.0 300.0–505.0 29.6

Table II. Root Mean Square Error of Cross Validation (RMSECV), Root Mean Square Errors of Prediction (RMSEP), Correlation (R), the Number of

Factors (n) and Variables (m) for PLS and MLR Models Obtained with Preprocessed ATR Spectra of PET Samples

Preprocessing

PLS MLR

Calibration Prediction Calibration Prediction

RMSECV
(kgf/mm2)

RMSEP
(kgf/mm2) R n

RMSECV
(kgf/mm2)

RMSEP
(kgf/mm2) R M

None 1.6 1.5 0.91 7 2.1 2.4 0.70 10

Smooth 1.7 1.3 0.92 7 2.1 2.3 0.70 11

SNV 1.6 1.3 0.91 11 2.4 2.0 0.72 6

Derivative 1.5 1.3 0.93 6 1.7 2.3 0.74 9

MSC 1.9 1.6 0.88 7 2.1 2.1 0.75 14

Smoothþ MSC 1.8 1.5 0.88 7 1.8 1.9 0.78 12

Derivative þ MSC 1.8 1.4 0.92 8 1.7 2.3 0.74 9

Derivative þ SNV 1.8 1.4 0.90 9 2.1 1.5 0.83 12

Smooth þ SNV 1.7 1.3 0.91 5 2.0 1.7 0.78 11

Figure 2. Selected variables represented in the spectrum of PET obtained

by ATR, using PLS-Jack-Knife algorithm (l) and using MLR- SPA algo-

rithm (*) to build models for prediction of tensile strength at break.
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variation of the mechanical properties under study, without los-

ing the main polymer features. The extended range is presented

in the second column on Table I. The values of the standard

deviation (intra laboratorial reproducibility), for the reference

method were used to evaluate the predictive ability of the

method (third column on Table I).

Determination of Tensile Strength at Break with ATR Spectra

Table II shows the values of RMSECV (root mean square error

of cross validation), RMSEP, the correlation coefficient of the

predicted versus reference values (R), the number of factors (n)

for PLS models, and the number of variables (m) for the MLR

models to compare the performance of some preprocessing

techniques applied to the ATR spectra of PET samples. When

smoothing or derivation was used, the values presented are the

best results obtained after testing different window sizes.

The PLS model built using the spectra processed with smoothing

(window size of 9 points) and SNV simultaneously had the low-

est RMSEP (1.3 kgf/mm2), high correlation (0.91) and needed

the lowest number of factors (5) for the model construction.

For the MLR models, the pretreatment that originated in the

model with smaller RMSEP (1.5 kgf/mm2) and had the highest

correlation (0.83) was the derivation (window size of 9 points)

associated with SNV. This model was built with the 12 most in-

formative spectral variables selected using the SPA algorithm.

The F-test was carried out to compare the RMSEP values of the

best models for PLS (1.3 kgf/mm2) and MLR (1.5 kgf/mm2).

Those values were considered statistically equivalent at a confi-

dence level of 95% (F(29,29,0.95) ¼ 1.9 and Fcalculated ¼ 1.3). The

RMSEP values for both models are similar to the standard devi-

ation of the reference method.

Figure 2 shows the variables selected using the Jack-Knife algo-

rithm (*) and the most significant variables selected by the

SPA (l) for the models mentioned above. There is a preference

for regions where there are vibrations of the OCO ester group

(1264, 1245, and 1016 cm�1), CH aromatic vibrations (1016 and

724 cm�1), and C¼¼C aromatic vibrations (1471 and 1507 cm�1).

Determination of Tensile Strength at Break with Direct

Transmission Spectra

Table III represents the results of the models constructed using

spectral data obtained by the direct transmission technique. The

values of RMSECV, RMSEP, the correlation coefficient of the

predicted versus reference values (R), the number of factors (n)

for PLS models, and the number of variables (m) for the MLR

models have been shown to compare the performance of some

preprocessing techniques. When smoothing or derivation was

used, the values presented are the best results obtained after

testing different window sizes.

The PLS model built using the spectra processed with derivative

(window size of 9 points) and SNV simultaneously had the low-

est RMSEP (1.1 kgf/mm2), high correlation (0.93) and used the

lowest number of factors (6). In relation to the MLR, models

constructed with smoothed spectra and with spectra treated

with SNV associated with smoothed, there was an identical per-

formance, with 1.5 kgf/mm2 as the lowest RMSEP value and

Figure 3. Spectrum of PET samples obtained by direct transmission with

the variables selected by the PLS-Jack-Knife Algorithms (l) and MLR-

SPA (*) for the construction of models for the tensile strength at break.

Table III. Root Mean Square Error of Cross Validation (RMSECV), Root Mean Square Errors of Prediction (RMSEP), Correlation (R), the Number of

Factors (n), and Variables (m) for PLS and MLR Models Obtained with Preprocessed Direct Transmission Spectra of PET Samples

Preprocessing

PLS MLR

Calibration Prediction Calibration Prediction

RMSECV
(kgf/mm2)

RMSEP
(kgf/mm2) R n

RMSECV
(kgf/mm2)

RMSEP
(kgf/mm2) R m

None 1.2 1.1 0.91 7 1.2 1.8 0.82 21

Smoothing 1.3 1.2 0.91 8 1.4 1.5 0.83 12

Derivative 1.2 1.1 0.92 7 1.6 1.6 0.87 14

MSC 1.3 1.1 0.93 10 1.4 1.5 0.89 15

SNV 1.2 1.0 0.94 7 1.7 2.2 0.72 12

Smoothing þ SNV 1.2 1.1 0.93 8 1.4 1.5 0.83 12

Derivative þ SNV 1.3 1.1 0.93 6 1.6 2.3 0.71 11

Smoothing þ MSC 1.2 1.1 0.92 7 1.4 1.8 0.78 13

Derivative þ MSC 1.4 1.2 0.90 15 1.9 2.2 0.67 9
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0.83 as the correlation. Both models were built using 12 factors

(or variables). According to an F-test at a confidence level of

95%, these three models are statistically equivalent (F30,30,0.95 ¼
1.9 and Fcalculated¼ 1.9). These RMSEP values were similar to

the precision (1.3 kgf/mm2) of the reference method.

Figure 3 shows the variables selected by the Jack-Knife and SPA

algorithms. The discontinuity observed in Figure 3 corresponds

to the regions with saturated bands removed before model

building. As expected from the results obtained using ATR, vari-

ables corresponding to CH aromatic vibrations (1016 and 724

cm�1) and C¼¼C aromatic vibrations (1471, 1507, and 1580

cm�1) were selected.

Determination of the Tensile Modulus with ATR

and Direct Transmission Spectra

Table IV shows the results for the PLS models. The MLR mod-

els did not present satisfactory results, and therefore, they have

not been shown. MLR models depend on the selection of the

variables and cannot deal with non linearities as PLS models.

These aspects may have influenced the poor performance of

these models.

For the spectra obtained using the ATR technique, the model

with the lowest RMSEP (30.1 kgf/mm2) and the highest correla-

tion (0.80) is the one constructed using the derivative spectra

(window size of 9 points). For the spectra obtained by direct

transmission, the best model was the one built with the spectra

processed with smoothing combined with MSC. This model

had low RMSEP (29.3 kgf/mm2), higher correlation (0.73) and

used 7 factors to construct the model. The gamma radiation

was not as effective in extending the range of variation of the

tensile modulus as it was for the tensile strength at break, and

this is reflected in lower R values when compared with those

obtained for the tensile strength at break. However, it was possi-

ble to construct PLS realiable models to determine this prop-

erty, with RMSEP values similar to the precision of the refer-

ence method (29.6 kgf/mm2).

Figures 4 and 5 show the variables selected by the Jack-Knife

algorithm for spectral data obtained by ATR and direct trans-

mission, respectively. The discontinuity observed in Figure 5

corresponds to the regions with saturated bands removed before

model building. Figure 4 illustrates the selected variables which

correspond to vibration of the OCO ester group (1720 cm�1),

Figure 4. Spectrum of PET samples obtained by ATR the variables selected

by the Jack-Knife algorithm (l) for the construction of models to deter-

mine the tensile modulus.

Figure 5. Spectrum of PET samples obtained by direct transmission with

the variables selected by the Jack-Knife algorithm (l) for the construction

of models to determine the tensile modulus.

Table IV. Root Mean Square Error of Cross Validation (RMSECV), Root Mean Square Errors of Prediction (RMSEP), Correlation (R), and the Number

of Factors (n) for PLS Model Obtained with Preprocessed ATR and Direct Transmission Spectra of PET Samples

Pr�eprocessing

PLS

ATR Direct transmission

Calibration Prediction Calibration Prediction

RMSECV
(kgf/mm2)

RMSEP
(kgf/mm2) R n

RMSECV
(kgf/mm2)

RMSEP
(kgf/mm2) R n

Derivative 29.4 30.1 0.80 9 31.1 43.9 0.50 7

MSC 39.6 51.8 0.49 7 31.7 30.6 0.62 9

SNV 31.7 39.5 0.75 5 35.0 32.4 0.57 6

Derivative þ SNV 39.3 46.9 0.66 6 32.6 28.6 0.72 10

Smooth þ MSC 41.2 52.0 0.24 7 38.8 29.3 0.73 7
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CH aromatic vibration (1016 cm�1), and C¼¼C aromatic vibra-

tions (1471, 1507, and 1580 cm�1). For the direct transmission

data (Figure 5), variables corresponding to the vibrations of

CH aromatic (1016 cm�1) and C¼¼C aromatic (1471 and

1507 cm�1) have been selected.

CONCLUSIONS

MIR spectroscopy associated with multivariate calibration has

proved to be effective in determining the tensile strength at

break and tensile modulus of PET films. For tensile strength at

break, both regression techniques used, PLS (Partial least

square) and MLR, showed similar results with RMSEP similar

to the repeatability of the conventional method used to deter-

mine these mechanical properties (1.3 kgf/mm2 ). For tensile

modulus, PLS models showed better performance, resulting in

RMSEP values similar to the precision of the reference method

(29.6 kgf/mm2).

The two techniques for spectra acquisition used (ATR and

direct transmission) resulted in reliable models for predicting

these mechanical properties. Therefore, any one of them could

be applied to industrial quality control. Direct transmission

technique, however, is the simpler alternative, not requiring a

specific accessory.
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